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Abstract. We describe the different methods of generating S-function series, giving some 
new series as an example in each case. 

1. Introduction 

S-function techniques, though introduced in the last century by Cauchy and Jacobi, 
are still a lively branch of contemporary physics (King 1975, Yang and Wybourne 
1986). As stated by Cummins'and King (1987), they are 'an invaluable aid to calcula- 
tions involving finite-dimensional representations of the classical Lie groups'. 

More generally, the theory of symmetric functions is a rich field which has developed 
since the end of the eighteenth century starting with classical elimination theory (see 
Sylvester (1973), for example, for work from 1837-93). Nowadays, the convenient 
point of view, which we summarise in § 2, is to look at S functions as operators on 
the ring of polynomials and to use the A -ring structure of this ring. Natural transforma- 
tions then allow us to get, from one identity, an infinite number of seemingly different 
ones (see (2.3)-(2.7), (6.2) and (6.3)). 

In § 3, we discuss some Littlewood-type formulae, enlarging the list of Yang and 
Wybourne (1986, § 4). 

One basic and defining property of S functions is the Cauchy formula (4.1) which 
is very often not ascribed to this (French) author. From it, one recovers very easily 
the identities given by Yang and Wybourne (1986, 0 5), to which we add (4.6) and 
(4.8) as further examples. 

These manipulations do not add anything substantial to the work of Littlewood 
(1950). We present and illustrate in 8 5 a more powerful method of symmetrising 
operators to generate S-function series (see (5.9) and (5.10)). 

As a final comment, we give a determinantal expression of the plethysm which 
does not use the characters of the symmetric group (6.4). 

SSupportt avec Constance par le CNRS and le Programme de Recherches coordonntes Math-Info, 
btndficiant du Programme d'Echanges europdens (culturels) PROCOPE. 
11 Visiting LITP during the preparation of this work. 
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2. S functions 

k To any formal seriesf= Xkao z Skr the S,  belonging to a commutative ring, Littlewood 
(1950, ch 6.4) associated the infinite matrix S(f) = (SJ-,),,,po, putting S,  = 0 if i < 0, 
and defined skew Schur functions to be the minors of this matrix. 

More precisely, given I = ( i ,  , . . . , i,) E Z", J E Z", he defined S,,, to be the minor 
of S(f) taken on rows i,, i n - ,  + 1, . . . , i ,  + n - 1 and columns j , ,  j , - ,  + 1, . . . ,jl + n - 1 
(the minor is 0 if one of these numbers is less than 0). When I = 0", one writes SJ 
instead of SJ,,,,~. Of course, if the determinant SJ,I has no zero column or row, nor 
identical columns (or rows), then by a proper reordering, one transforms SJ , ,  into 
SKIH, with H, K partitions (i.e. k ,  3 k 2 3 . .  .a k, 3 0 ) .  Indeed, one performs the 
reordering through the rule 

/ J  / I = - '  J - I J t l  / I '  (2.1) 
Let X = { x , ,  x 2 , ,  . .} be a finite or infinite set of variables. The original Schur 

functions, due to Cauchy, Jacobi, etc, are the ones associated with a polynomial 
f =  II, (1 + zx,) ,  or with the inverse of a polynomial: f= l/II,( 1 - zx,). In the last case, 
one usually writes SJ,1(x,, x 2 , .  . .) or SJ,I(X). 

One gets into problems of notation when one has to tackle simultaneously Schur 
functions associated with different series. The most efficient and compact way to 
proceed is to use the set-up of A rings (Macdonald 1979, appendix), which amounts 
to considering the SJ to be operators on the ring of polynomial functions with real 
coefficients. This is done by associating with any polynomial P = au +Po +. . . , with 
a, p, . . . E R, U, U, . . . monomials, the series fp( z )  = (1 - z ~ ) - ~  (1 - Z V ) - ~ .  . . . In other 
words, the S J ( P )  are defined through the generating function 

(2.2) c ZJS, ( P )  = (1 - zu)-a (1 - zo)-P . * . * 
Thus, when f is a generic rational series: f( z )  = II, (1 - zy,)/II, (1 - zx,) (one can write 
in short, following the notation of Einstein and Zweistein (1903), f= 
~ x s x , y ~ v ( l  - z y ) / ( l  - z x ) ) ,  i.e. when U, U,. . . , are variables and the coefficients 
a, p, . , . , are *l, the associated Schur function S J I l  is now written S J l I ( ( x l  +x2+.  . .) - 
(yl  + y 2 + ,  . .)) or SJ,,(X -M). Accordingly, one has to identify a set of variables 
X = { x ,  , x2 ,  . . .} with the polynomial X = x ,  + x2+.  . . . 

The functions SJ,, (X - M) are called by some people super-S functions, but in fact 
are a special case of Littlewood S functions attached to general formal series. 

One can act separately on z and P. In particular, one has the multiplication of z 
by a scalar A :  

A : f p ( z )  ' f P ( A Z )  (2.3) 

f P ( Z )  ' f - P ( Z )  = l / f P ( Z ) .  (2.4) 

and the multiplication of P by -1: 

Notice that f p ( - z )  # f - p ( ~ ) ,  and that (2.4) is an involution. 
The associated Schur functions are transformed according to the following rules: 

A : s,,,(P) -+ A I ~ I - ~ ' ~ s  J /  I ( P )  

s J /  I ( - P )  = (-l)'J'-lllsJ-,l-(p) 

(2.5) 

(2.6) 

where l J (  = j l + j 2 + .  . .+J,, and when J and I are partitions: 

where J - ,  I -  are the partitions conjugate to J, I (Macdonald 1979 1.1). 
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For example, the coefficients d ,  appearing (see (4.8)) in the expansion IIxeX (1 + x + 
x 2 ) = Z  dIS,(X) also give, thanks to (2.3) with A = -1 and (2.4), the other three 
expansions 

JJ (1 - x + x2) = c ( -l)~l~dlSl (X) 
X€X 

n ( 1 - x + x 2 ) - ' = ~ d I S I - ( X )  
X E X  

JJ ( l + x + ~ ' ) - '  (-I)"'dlS1-(X). 
X S X  

The addition P + Q corresponds to the product of corresponding matrices or series: 

fP+Q(Z) =fp(z) + f Q ( Z )  W P + Q ( Z ) )  = W P ( Z ) )  ' S(fQ(Z)). 

Therefore, the Binet-Cauchy formula for the minors of a product of matrices (Muir 
1812, ch IV) implies 

V I ,  J E Z "  s J / l ( P + Q ) = C S J / H ( P )  * s H / I ( Q )  (2.7) 
H 

sum on all partitions H E N". 
The product of Schur functions is given by the Littlewood-Richardson rule (Mac- 

donald (1979, 1.9); see also the more efficient rule in Lascoux and Schiitzenberger 
(1985a)) which admits the following special case due to the Italian geometer Pieri: 

V J  E N", VP, V r  3 0 * s J ( p ) = C S H ( p )  (2.8) 
sum on all H :  ( h , ,  h , ,  . . . , h , , + , ) ~  N"+, such that h ,  -jl , .  . . , h, - j n ,  h,,, , . . . , h,,, are 
equal to 0 or 1 (independently) and such that IHI = IJI + r. 

When J is a partition, the sequences H in (2.8) which are not partitions give 
functions SH which are zero, and thus the summation restricts us to partitions H .  For 
example, SI,  * Sz2= ~ 3 3 0 0 + S 3 ~ ~ 0 + S 2 ~ 1 0 + S ~ ~ l l  and the term S2310, which is zero, does 
not need to be written. 

Finally, given two finite sets of variable X and Y, one has the following property 
of factorisation which was an essential ingredient of classical elimination theory (but 
in terms of isobaric determinants; see, for a modern version, Berele and Regev (1987)). 
Let J E W ,  X be of cardinal n, Y of cardinal m. Then 

with m" + J = ( j ,  + m, . . . , j ,  + m )  E N". 

3. Some Littlewood-type formulae 

Consider the 32 formal expressions II, (1 * x,)*'  (1 * x,xJ)*l  where the different 
symbols * and < or s can be freely chosen (some of these expressions may represent 
the same function). Thanks to (2.3) with A = -1 and (2.4), these formal expressions 
can be divided into eight sets, each of cardinal 4. 

In Yang and Wyburne-(1986, 00 2, 4) one can find the S-function expansion of 
representatives of all the sets, except for the two sets containing respectively II, (1 - 
x,)-' I I IsJ (1 - x,x,)-' and II, (1 - x,) n,,, (1 - x,x,). The first one leads to large multi- 
plicities and will not be discussed here. On the other hand, the second is multiplicity 
free and can be obtained as follows. 
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Littlewood (1950, ch XI) gives the expansion of rIisj (1 +z2xjxj), and thus for 
z = d-1, the expansion of nIsj (1 -xixj); in that case, it is convenient to index Schur 
functions by words rather than partitions. To be precise, given a word w in the alphabet 
(0, a } ,  one takes its image by the application: {words of degree n}+N", w = 
w,, . . . , w, + w = (2w1 ,  4 w 2 , .  . . , 2 n w n )  with a = 1. 

Then Littlewood's formula is 

n ( l - x i x j ) = c  (-1)~"'QSw(x) 
i s j  

(3.1) 

sum on all words of degree n in (0, a}, IwI, denoting the degree of w in a. For 
example, for n = 3, one has the words 000, aOO, OaO, OOa, aaO, aOa, Ona, aaa and thus 

n 
l s j s 3  

( 1 - x ~ x ~  = sOOO - s200 - s040 - s006 + s 2 4 O  + s 2 0 6  + SO46 - &46 

i.e. with partition indexing, 1 - S, + S3l- S41 - S33 + s431-  S4,, + S444. Now, Pieri's 
formula (2.8) allows us to multiply by the factor n (1 -x,). We obtain words in 
{0,1, a, p = a + 1) and Schur functions indexed by the image of these words through 
w, = a + 2 i ;  w, = p + 2 i  + 1; w, = O +  0; w, = 1 + 1. Words having a factor . . .01  . . . or a 
factor. .  . a @ .  . . need not be taken, as they correspond to zero Schur functions (being 
determinants having two identical columns). Let us call good a word with no factor 
. . . 01 . . . , . . . a@.  . . , . . . Oa . . . , . . .pl  . . . . Since S oa = -S p l  , we can eliminate 
any pair of words wtOawtt and w'pl w", with w" arbitrary and w' good. Finally, we 
are left with only good words, i.e. more concretely, with words which factor: w = w'w'', 
w ' ~ ( 1 ,  a}", w " ~ ( O , p } *  (i.e. with a left factor in 1, a and a right factor in 0, p ) .  To 
conclude, we have 

(3.2) 

sum on all words w'w'' of total degree n, W ' E  (1, a}", W " E  (0, p } * .  For example, for 
n = 3, one has (3 + 1)23 such words; the words of degree 1 in a are a00, ap0, aOp, 
app, a 10, laO, a lp ,  l ap ,  l l a  and furnish respectively the Schur functions S200, Szs0, 

In terms of partitions, one can rewrite (3.2) as follows. Recall (Littlewood 1950, 
is the set of partitions of the type 

s 2 0 7 ,  s 2 5 2 ,  s 2 1 0 ,  s140 ,  s 2 1 7 ,  s147, s116* 

ch XI) that njs j  ( l+xixj)  = X i s , .  S I @ ) ,  where 
( y1 + 1, y2+ 1, . . . ; y l ,  y 2 ,  . . .) in Frobenius notation (Macdonald 1979, 1.1). Then 

n ( l -x i )  n ( l - x i x j ) = ~ ( - l ) " " ' s / ( x )  
;s n i s j s n  I 

(3.3) 

where the sum is over those partitions I for which one can remove one and only one 
vertical strip (Macdonald 1979, 1.1) such that the resulting partition, denoted Ir, 
belongs to r. In that case, one puts &(I) = ~ ~ I ' ) + ~ I ~ .  

4. The Cauchy formula and its applications 

Let X = (xl  , . . . , x,}, V = { y l , .  . . , y m }  be two sets ofvariables. Then one has the Cauchy 
formula: 

i , j  I 

where the sum is over all partitions I. This formula can be deduced from the Binet- 
Cauchy formula for minors of a product of matrices. 
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Let p(x)  = II I.EV ( 1  -yx) be a polynomial such that p(0) = 1 ,  the set V being the 
set of roots of cp(x-'), treated as a set of independent variables. From (4.1), one gets 

and with the 

fi q(xi)- l=CsI(V)S,(X) 
i = l  I 

help of (2.3)-(2.6), the equivalent forms 

with A any real scalar. 
In all these formulae, the sum is over all partitions, but of course, since S,(V) is 

zero if I has more than card(V) = deg(cp) = m parts, the sum is limited to partitions 
with m parts at most. Thus, to compute explicitly (4.2), we can stick to the case where 
card@) = m. 

Let us treat the case p(x) = 1 - x p  with p a positive integer. Put V = {lo, f ;  . . . , lP-'}  
with 5 a primitive p root of unity. Then the identity ( 1  -xp))-' = xkp implies that 
S,(V) = 1 or 0 according to whether n is a multiple of p or not. More generally, for 
any J = p H ,  H E NP (i.e. such that each part of J is a multiple of p )  S,(V) = 1 since S, 
is in that case the determinant of the identity matrix. The partitions I such that there 
exists J = p H  : SI  = isJ are the partitions without a p core (Robinson 1961). Thus, 
finally 

n ( l - x p ) - ' = C  sJ(X)=c * s I ( X )  (4.6) 
I 

the first sum being on all J = pH,  H E NP and the second on all partitions without a p 
core and with p parts at most. 

For example, for p = 3, one recovers the result of Yang and Wybourne (1986 0 5): 

n ( l - x ? ) - ' = C  SJ = ( S f + 3 k ~ + 3 h ~ ( x ) - S 1 + 3 k + 2 , + 3 h + l  I ( ~ ) >  (4.7) 
I r , h < k  

sum on all J = ( j ,  , j2 , j3 )  E N3 such that j ,  , j 2 ,  j 3  are multiples of 3.  
From (4.3)-(4.9, one also gets the S-function series for n, ( 1  - x f ) ,  II, (It-xp), 

Let now cp(x) = l + x + .  . .+xp- '  and V = { l , .  . . , l"-'} with 5 a pth primitive root 
ofunity. Then ~ / ~ ( X ) = ( ~ - X ) / ( ~ - X ~ ) = ~ ~ X ~ ~ - X ~ ~ + '  shows that S,(V)=l ,  -1 o r 0  
according to j = 0,  1 or 2, . . . , p - 1 mod p ;  more generally, S,  (V) = i .1 or 0 according 
to the values of i l  , . . . , i p - l  mod p .  More precisely, up to a permutation of columns, 
the only non-zero determinants SH(V),  HEN'-', are the ones which factor in a 
determinant with 1 in the diagonal, -1  in the diagonal above, and a determinant with 
-1 in the diagonal, 1 in the diagonal below. Accordingly, 

(4.8) 

n, ( 1  -xF)-'. 

n ( 1  + X I  +. , . + xp-')-' = (-l)P-l-? C SH 
z s n  O r r s p - 1  H 

sum on all H E N p - l ,  h ,  , , . , , hp-r- l  = 0, h p - r ,  . . . , hP-' = 1 mod p .  
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5. Symmetrising operators 

In the preceding sections, we have handled S series with only small multiplicities. The 
most efficient method, in our view, to generate more general series is to use symmetrising 
operators on the ring of functions of several variables (Lascoux and Schutzenberger 
1983). The oldest of these operators are the divided differences of Newton, mainly 
used in interpolation theory or numerical analysis, but also in the cohomology theory 
of flag manifolds (Bernstein et a1 1973). The symmetrising operators allow us to 
increase the number of variables in the S series. We shall only use the total symmetriser 
rr on the ring of series in x , ,  . . . , x,, defined by 

denoting by f "  the function f (xFl ,  . . . , x,,,). 

f symmetrical + T (  f g )  = f ~ (  g )  

Two basic properties of rr are 

( 5 . 2 )  

rr(x;l* . . x?)  = S,(X) when I EN". (5.3) 
In fact, (5.3) is the definition by Jacobi of 'Schur functions' and has been extended 

Schur functions are eigenfunctions of rr, i.e. for m s n, I E Nm, J E Nn-'",  one has 
by Weyl (the Weyl character formula) to groups other than Gl(n).  

rr[S,(x,+. * .+x'") * sJ(x,+I+. . .+x,)1 = S,J(W 

where IJ is the element i , ,  . . . , i,, j , ,  . . . ,j,-, of N". 
From (5.4) with m = n - 1, I = j O  . . . 0, J = 0, one sees that 

rr( n ( l -x , ) - l )  = n (l-x1)-I .  

ii( n (1-x1)-1) = r r ( I - - x , ) .  n ( l -x1) - I=  n ( l -x l ) - l .  

I G r S n - 1  I S I S ,  

More directly, writing 

n ( l - x l ) - ~ = ( l - x , )  n (l-x1)-I  
I S r S n - l  I = = l S ,  

one can use (5.2) and recover (5.5): 

,S1==,-1 lGl==" 1 s r r n  

One checks without much more difficulty the following identities: 

if n odd 
if n even T( I S i G n - 1  I-I (1-Xixn))={' 1 - X I  . . . x, 

if n even 
if n odd *(xn l < i S n - 1  n (l-Xixn))={O X I  * * . x, 

. . . X U ) *  

l s i r n - I  ( X I . .  .x , )2-x1 . .  .x ,  if n even. 
if n odd 

(5.4) 

( 5 . 5 )  

(5.6) 

(5.7) 

(5.8) 

We illustrate on a classical formula how to use the operator rr. Let us consider 
F ( n - l ) =  n ( l -x i ) - '  n (l-xixj)- ' .  

i s n - I  i i j s n - 1  
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Then 

~ ( F ( n - l ) ) = . ? r ( ( l - x , ) ( l - x l x , )  . . . ( ~ - x , l ~ l x , ) F ( n ) ) = ( l - x l  . . .  x,)F(n)  

thanks to (5.2), (5.6) and (5.7). Assuming now by induction that F ( n - 1 ) =  
C S,(x ,+-  *+x,-,), we transform this identity with the help of T into (1 - 
x1 . , . x,)F( n )  = Z S,(xl + . . . + xn), sum on all partitions I = ( il , . . . , in - l ) ;  dividing by 
(1 -x l  . . . x,), we finally obtain the identity of Schur (Macdonald 1979, 1.5): 

n (l-X,j-l ( l - x l x J j - ' = ~ s , ( x , +  . . .+ x,j. (5.9) 
I = ,  ,<JSf l  

The other formulae of this type given by Littlewood could be similarly proven; here 
is a new candidate: 

n (1 - x, + xf)-'  n (1 - xIxJ)-' = C * m,s,-(x) (5.10) 

sum on all partitions I = .  . .3m32m21ml such that m2J+1=0 or 1 mod3, with m, = 
( m2 + 1)( m4+ 1)( m6 + 1) . . . , the sign * being ( - l ) [ m 1 / 3 1 + [ m 3 / 3 3 +  , with [ m/3] the integral 
part of m/3. 

IS, ICJSfl 

Proof: Let G,(k) denote the function Z *mlSI-(xl +. . .+xk) ,  with the m, defined 
above. From (5.6)-(5.8), we have 

if n odd 
if n even. 

2 1 -XI . .  . X , + ( X ,  . . . x,) 
( l -x ,+x i )  n (1-XaXn) 

i s , - I  (1 - X I . .  . x,y 

Suppose that G,-l(n - 1) = X  *m,S,-(x,+. . .+x,-,). The image of this equality by 7~ 

is 

l + ( x l * . * x ~ ) 3  
if n odd 

G,-,(n) = l + X ,  . . * x, 
if n even. 

This determines inductively G, ( n ) ;  we just illustrate for the step n = 3 + n = 4 that 
G,(n) is as statedin (5.10). Startingfrom G 3 ( 3 ) = Z * ( h - j + 1 ) S k h , ( x , + x 2 + x , ) , j ~ O  
or 1, k - h = 0 or 1 mod 3, we get with the help of 7 ~ :  (1 - x ~ x ~ x ~ x ~ ) ~ G ~ ( ~ )  = G3(4) = 
Z *( h - j  + l)skhJ(XI X2 + X3 + Xq) and thus 

G4(4) = *( i + 1)( h - j  + 1)(X1X2X3X4)~Skh, ( X I  + X2 + xj) 
= * ( i +  l ) ( h  - j +  1)S!+kr+h l+,,(xl +xz+x3+~4) .  

Instead of computing the Schur functions for the set of roots of a given polynomial 
cp(x), as in 54, one can also use the symmetriser 7 ~ .  Take for example cp(x)= 
1 - x + x2 - x3. Then, by direct development, 

1/cp(Xl)cp(X2) = (1+X1)(1+Xd/(1 - X X 1  --xi) 

sum on all pair of positive integers, h, k = 0 mod 4. The image of l/cp(x1)cp(x2) by the 
operator 7~ corresponding to X = {xI , x2, x3} is 

T(1 - x3 + - x : ) / ~ ( x l ) c p ( x 2 ) ( P ( x 3 )  = (1 - x l x 2 x 3 ) / ~ ( x l ) ~ ( x 2 ) ~ ( x , ) .  
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Thus 

1 / (P (XI ) (P (xz) rp (x3) 

= S , + , , + , , ( X ) - S , + , , + h + , i ( X ) - S , + , + ,  i + h ~ ( X ) + S ~ + k + l  r+h+l  t ( X )  
1,h.k 

(5.11) 

sum on all triple i, h, k E N3, h, k = 0 mod 4. 
Moreover, since for n 3 4 one has T (  1 - x, + x', - x',) = 1, 7~ being the operator 

corresponding to X = {x, , . . . , x,}, formula (5.1 1) gives the expansion of 
l/rp(x,) . . . cp(x,) for general n. 

6. Other methods to generate S-function series 

In the preceding section, we did not use the fact that S functions are compatible with 
addition (formula (2.7)) and composition (as operators on the ring of polynomials); 
one can also combine S functions with other symmetrical functions also considered 
as operators. 

Doing so, one can thus give a more general outlook to all the formulae written in 
the preceding sections and produce apparently new ones. 

For example, (5.9) should be written, with P any polynomial, 

J i 

Taking P = (xI +. . . + x,) - ( y l  +. . . + y,) = X -V gives (using SI,@ -V)  = S,,(X) - 
XV + S m )  

Z'"'S,(X -V)  = c ZjSj(X - v + SI,@) -XV+ S,(V)) 
J i 

Decomposing according to X' and V' and comparing the coefficients of SH (X') S, (V') 
in both members, one gets, for every pair of partitions H, K (Lascoux and Schutzenber- 
ger 1985b, Macdonald 1985), 

(6.3) 

As for the composition of S functions as operators, called a plethysm by Littlewood 
(who denotes S,(S,(X)) by J O I ) ,  it is still one of the most important problems in 
classical group theory to find efficient algorithms or combinatorial objects to describe 
it; § 3 is a variation about S,(S,), S,(S,,), SI,(&), SI !(Sll)). One can use the symmetris- 
ing operators, as in § 5, to get recursions concerning the plethysm. However, it must 
be noted that the theory of recursive sequences (or of Pad6 approximants), allowing 
us to express, from the expansion of a rational function P(z) /Q(z) ,  both P ( z )  and 
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Q ( z ) ,  provides dosed expressions for the plethysm, though not very useful for computa- 
tions. For example, by definition, 

z r S r ( s l l l ( X ) ) =  fl ( l - z x , x , x h ) - ' .  
r l < i < j < h s  n 

Let us write T, for S r r r ( X ) ,  let m = ( y ) ,  I = ( i , ,  . . . , i,) be a partition and T, be the 
determinant 1 T,,,+,-i+k-hl g s h , k s m .  Then, for any integer q 2 m - 1, one has 

S/(Sl,l@)) = T4II1+//T4f11 (6.4) 
q m  + Z meaning the partition q + il , . . . , q + i , .  
Pro05 Let n = card(X) 2 3. We then have 

(1 - zx1x*x3)-1  = zrsr, ,(x,  + x* + x3) .  (6.5) 
Writing (1 - X ~ X ~ X ~ ) - ~  = Q / ~ I ~ ~ , < , < , , ~ ~  ( 1  - zx ,x ,xh)- l ,  we see that the image of (6.5) 
by the operator 7~ is 

c Z ' S r , r ( X ) = C  Z'T,=T(Q)  n ( l - z x , x , X h ) - l  ( 1 s I < I <  h s n ) - I  

Now, the factorisation formula (2.9) allows us, given the expansion of a rational series, 
to express symmetric functions of the poles (or of the roots): if 7 ~ (  Q )  = rI,,,, (1 - z y ) ,  
then 

Sq~~~+/(Si i i (X)-v)= T4191+1 = S q ~ l > ( s i i i ( X ) - v )  * s,(siii@)). 

The same result as (6.4) holds for S,(S,p(X)), the function T, this time being S,P(%) 
and m being (i). 

Finally, we refer to Macdonald (1979) for the other bases of symmetric functions. 
We shall just mention a formula of Gordan (1899), also found in Lascoux and 
Schutzenberger (1985b, proposition 1.9), concerning the multiplication of a Schur 
function by a monomial function (formula (2.8) is, in fact, the special case of the 
monomial function S,.). We detail here only the multiplication of So..o= 1 by a 
monomial function: for any Z E N", then 

For example, writing in short x'1 . ' I *  and S H ,  one has, for n = 4 and I = 0099, xooU9+ 

product II ,cp(x,)  in terms of monomial functions, we easily deduce from (6.6) the 
expansion of this product in terms of the Schur function; for example (1 + x:)  . . . (1 + 
x : )  = Z H S H ( x 1 S . .  . + x 4 ) ,  sum on the 24 4-tuples of integers H = ( h , , .  . . , h4), 
h ,  , . . . , h, = 0 or 9. In this way, one obtains formulae (27)-(356) of Yang and Wybourne 
(1988) who limit themselves to power 4. 

SO099 + s0909 + s9009 + S0990' s9900 .  Expanding any x0909 + x9009 + x0990 + x9090 + x9900 = 
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